
STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

STAT Center of Excellence
2950 Hobson Way – Wright-Patterson AFB, OH 45433

Applying Scientific Test and Analysis
Techniques within the DevSecOps

Lifecycle
Authored by:

William F. Rowell, PhD

Steven C. Oimoen, PhD

Darryl K. Ahner, PhD, PE

15 April 2021

The goal of the STAT COE is to assist in developing rigorous, defensible test
strategies to more effectively quantify and characterize system performance
and provide information that reduces risk. This and other COE products are

available at www.afit.edu/STAT.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
CLEARED on 19 May 2021. Case Number: 88ABW-2021-0478

http://www.afit.edu/STAT

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

Table of Contents

Executive Summary ... 2

Introduction .. 2

Background ... 2

DevSecOps Lifecycle .. 2

STAT Process ... 4

Non-functional Requirements (NFRs) ... 5

Performance ... 6

Scalability .. 9

Reliability ... 10

Risk-based Approach to Software Test Coverage ... 11

Background ... 11

Optimizing Software Test Coverage in a User Story ... 12

Recommendations .. 15

Software Development Process Metrics ... 15

Automated Software Testing .. 15

Guidance Objectives ... 16

Lifecycle ... 16

Minimum Set of Automation Tasks .. 16

Assessment of Automated Software Testing Implementation ... 17

Conclusion ... 17

References .. 18

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 2

Executive Summary
Intelligent application of scientific test and analysis techniques (STAT) to Department of Defense (DoD)
weapon and business systems has proven to be a key component to enable effective, efficient, and
rigorous test & evaluation (T&E) supporting decision making at all levels. Implementation of
Development, Security and Operations (DevSecOps) and related modern software development
methodologies continues to grow within the acquisition of software intensive DoD systems. Similarly,
interest in leveraging STAT in the DevSecOps T&E environment is rising. This paper provides best
practices for applying STAT to T&E of software intensive systems using DevSecOps and includes insights
into appropriate STAT application techniques.

Keywords: Agile, DevSecOps, scientific test and analysis techniques, automated testing

Introduction
Scientific test and analysis techniques (STAT) are deliberate, methodical techniques (processes and
procedures) used to develop effective, efficient, and rigorous test strategies yielding defensible results.
STAT applies not only to all phases and types of Department of Defense (DoD) testing (developmental,
operational, integrated, and live fire testing) but also to testing performed in programs following any of
the six DoD adaptive acquisition framework pathways (urgent capability, middle-tier, major capability,
software, defense business systems, and services). STAT encompasses such processes and procedures as
design of experiments (DOE), reliability, software test coverage, automated software testing,
observational studies, and survey design used within the context of a larger decision support
framework. Each technique’s suitability depends on the specific test objective(s).

This paper provides best practices for applying STAT techniques to T&E of software intensive systems
using the Development, Security and Operations (DevSecOps) lifecycle. First, the paper covers
background information on the DevSecOps lifecycle and the core STAT process used to guide the
implementation of STAT techniques to the testing process. Then, the paper discusses four areas of
DevSecOps testing where STAT can be applied (non-functional requirements, risk-based approach to
software test coverage, software development process metrics, and automated software testing). The
final section (conclusion) summaries the application of STAT within the DevSecOps lifecycle.

Background

DevSecOps Lifecycle
DoD Instruction (DoDI) 5000.02, Operation of the Adaptive Acquisition Framework, defines six
acquisition pathways: Urgent Capability, Middle Tier, Major Capability, Software, Defense Business
Systems (DBS), and Defense Acquisition of Services. The Software Acquisition Pathway’s purpose is to
facilitate rapid and iterative delivery of software capability to the user via modern software

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 3

development practices such as Agile Software Development, DevSecOps and Lean Practices (DoDI
5000.02 Operation of the Adaptive Acquisition Framework, 2020).

DoDI 5000.87, Operation of the Software Acquisition Pathway, defines DevSecOps as follows:

 An organizational software engineering culture and practice that aims at unifying software
development, security, and operations. The main characteristic of DevSecOps is to automate,
monitor, and apply security at all phases of the software lifecycle: plan, develop, build, test,
release, deliver, deploy, operate, and monitor. In DevSecOps, testing and security are shifted left
through automated unit, functional, integration, and security testing – this is a key DevSecOps
differentiator since security and functional capabilities are tested and built simultaneously. (DoD
Instruction 5000.87 Operation of the Software Acquisition Pathway, 2020)

This paper focuses on DevSecOps as a software engineering practice with a well-defined software
lifecycle shown in Figure 1 (DoD Enterprise DevSecOps Reference Design Version 1.0, 2019).

Figure 1. DevSecOps Software Lifecycle

A key assumption of this paper is that the Develop phase of the DevSecOps lifecycle uses an Agile
software development process. Agile’s key characteristics (flexible planning, evolutionary development,
quick delivery, continuous improvement, and responsiveness to change) are consistent with the
DevSecOps approach. Figure 2 shows a diagram of a notional Agile software development process.

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 4

Figure 2. Notional Agile Software Development Process

STAT Process
The STAT Process, as illustrated in Figure 3, is designed to incorporate a high-level system engineering
approach to the scientific method to form rigorous test strategies that apply STAT methods and
techniques to better inform and manage T&E risks. This process enables STAT practitioners to identify
STAT-applicable candidate requirements and associated test objectives, develop appropriate T&E
strategies and test designs, and enhance the data analysis that results from such planning. An in-depth
discussion and primer on the STAT process is available in the STAT Center of Excellence (COE) best
practice “Guide to Developing an Effective Test Strategy” (Burke et al, 2019).

Disciplined adherence to the structured STAT process is essential to overall effectiveness and efficiency
of a T&E program. In particular, the STAT process focuses on developing a set of clear test objectives
that provide the demand signal for test resources throughout the testing process. Test objectives
derived in this manner accurately reflect program goals because they:

• Are derived from requirements and clearly stated
• Reflect focus and purpose of testing and evaluation
• Define scope of follow-on testing
• Form a basis for measures of performance (responses) which are specific, unbiased,

measurable, and of practical consequence
• Provide a basis for selecting more powerful analytic capability to inform results

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 5

Figure 3. STAT in the T&E Process

Non-functional Requirements (NFRs)
In the Scaled Agile Framework (SAFe®) methodology, which is widely used in DoD software acquisition,
NFRs define system attributes such as performance, scalability, reliability, maintainability, usability, and
security (Nonfunctional Requirements, 2021). NFRs serve as constraints or restrictions on system design
across different backlogs. For DoD systems, NFRs take a variety of forms: Key Performance Parameters
(KPPs), Key System Attributes (KSAs) or System Performance Measures (SPMs). Regardless of the specific
labels for these types of requirements used by the selected Agile methodology, NFRs are frequently
encountered in DoD programs. Therefore, NFRs must be tested rigorously to provide decision makers
with the evidence required to verify requirements have been met satisfactorily.

Because of the inherently random nature of processes involving performance, scalability, and reliability,
STAT techniques such as Design of Experiments (DoE) and statistical methods are particularly useful in
rigorously verifying these requirements. The sections below describe how to apply STAT to these three
NFRs.

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 6

Performance
In this section, we will do an end-to-end walkthrough of an example of applying STAT to a performance
NFR. The STAT planning phase information consists of a response time requirement for retrieving a
report, test objectives, a response, constraints, and factors and their associated levels. Note that the
test strategy involves a sequence of three test objectives concluding with rigorous verification of the
requirement. The test environment is representative of the expected operational environment. If the
factor-screening testing identifies any significant factors, set these factors in the requirement
verification tests to levels expected to occur in the operational environment. Characterizing response
times over the range of levels of significant test factors provide insights into where in the factor space
we may encounter performance problems. Table 1 provides test information and Table 2 identifies the
STAT planning information (factors and levels).

Table 1. Test Information

Item Description

Requirement Report from 80 percent of all queries will be displayed to user within 12
second or less once query is submitted

Test
Objectives

1: Screen factors to identify statistically significant factors (those that
influence report retrieval response time)
2: Characterize report retrieval response time over range of test factor
values
3: Rigorously verify satisfaction of the requirement

Response Elapsed time from when user submits request until report is displayed to
user

Constraints None

Factors and
Levels See Table 2

Table 2. STAT Test Planning Information – Factors and Levels

Levels/Factors Report Type Report Size
(MB)

User
Location

Download Speed
(Mbps)

Level 1 1 5 A 10

Level 2 2 20 B 40

After testing Test Objectives 1 and 2, a summary of key results is shown in Table 3 below.

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 7

Table 3. Test Results

Test Objective Results

1: Factor Screening

• Report Type and User Location are statistically significant
• User location is likely to have a negative impact on satisfying

requirement
• No significant factor interactions

2: Factor/Response
Characterization
(Predicted Response)

• Significantly increases when User Location is “B”
• Exceeds response time when User Location is “B” and Report

Type = “2”

3: Test Design • Report Type and User Location proportions must mirror
expected operational profile

Screening identified Report Type and User Location as significant factors; however, no factor
interactions were significant. Because this test showed that the levels of both User Location (“A”/”B”)
and Report Type (“1”/”2”) can significantly influence response time, it is vital that levels of these two
factors, in the set of requirement verification test runs, accurately reflect their current or estimated
levels in the operational environment to ensure the test results mirror real world expectations.

Next, an analysis using historical operational transactions revealed that at peak load 80% of report
requests come from User Location “A” and 20% from Location “B” with both user locations requesting
an equal percentage of each Report Type, shown in Table 4. The user operational profile created did not
take into account the values of the non-significant factors.

Table 4. User Operational Profile (Requests per Hour at Peak Load)

 Report
Type “1”

Report Type
“2” Total

User Location “A” 40 40 80

User Location “B” 10 10 20

Total 50 50 100

The output of Objective 3 testing is an equation (not shown) predicting response time as a function of
the significant factor levels. This equation reveals that there is a significant increase in response time
when the User Location is “B” and that the predicted response time from the combination of User
Location “B” and Report Type “2” exceeds the 12-second response time requirement (see Table 5). From
this testing we gain insight into what parts of the factor space are likely to cause problems.

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 8

Table 5. Predicted Report Retrieval Response Time Confidence Intervals (seconds)

Report Type

“1”
Report Type

“2”
User Location “A” 5.1 - 6.1 9.0 - 10.2

User Location “B” 12.9 - 14.1 19.5 - 20.9

Table 6 shows the requirements verification test design. Note that the relative fraction of both “A”/”B”
user locations (80/20) and “1”/”2” report types (50/50) mirrors the user operational profile from Table
4. Not shown is the computation required to determine the minimum sample size (number of
replications of the 10 test runs) required to achieve the desired level of confidence (usually 95%).

Table 6. Requirement Verification Test Design

Test Run # User Location Report Type
 1 A 1
 2 A 2
 3 B 1
 4 A 1
 5 A 2
 6 A 1
 7 A 2
 8 B 2
 9 A 1
10 A 2

Table 7 depicts the response times of the 10 requirement verification test runs. As expected, the
response times for test runs associated with User Location “B” are significantly higher compared to
those associated with User Location “A.”

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 9

Table 7. Requirement Verification Test Results

Test Run

User
Location

Report
Type

User
Location “A”

Use Location
“B”

 1 A 1 4.81
 2 A 2 9.84
 3 B 1 12.80
 4 A 1 4.18
 5 A 2 10.31
 6 A 1 5.65
 7 A 2 7.66
 8 B 2 19.90
 9 A 1 6.21
10 A 2 8.11

Figure 4 shows the analysis of the results in Table 7. The JMP tool is used to compute the tolerance
interval statistic associated with the hypothesis that 80% of the response times are less than 12 seconds
for a confidence level of 95%. Because the statistic (13.51366 seconds) exceeds the requirement of 12
seconds, the hypothesis is rejected, meaning that there is insufficient evidence to verify that the
requirement has been satisfied. Obviously, more work is required to reduce the report retrieval
response time; however, this sequence of tests has provided insight into where improvement is needed.

Figure 4. Analytical Results of Requirement Verification Testing

Scalability
Scalability is the capability of a system, network, or process to handle a growing amount of work, or its
potential adaptability to accommodate growth. Sometimes scalability is confused with capacity.
Capacity planning is a strategic activity, whereas scalability planning is a more responsive activity.
Usually, scalability arises during peak usage activities such as end of fiscal year activities in financial and
procurement systems.

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 10

Typically, scalability NFRs are stated in terms of the number of concurrent users the system can handle
without degrading System Response Time (SRT). Once the load, created by the number of concurrent
users, causes SRT to degrade, then the system has reached its scaling limit.

A scalability verification test usually involves the following steps:

1. Incrementally generate users in the same proportion that the user types appear in the set of
concurrent users.

2. Wait for system to stabilize after each increment of users is added.
3. Determine when SRT begins to degrade. A clear increase in average transaction response time

(latency) or, alternatively, a clear decrease in total transactions per second (throughput) is a
good indicator of SRT degradation.

4. Record the number of concurrent users when SRT degradation begins.

As illustrated in the Performance and Reliability sections, rigorously verifying scalability requirements
requires:

• Formulating appropriate null and alternative hypotheses (e.g., comparing the number of
concurrent users when System Response Time degrades to the required number).

• Selecting an appropriate statistic and level of confidence.
• Computing minimum number of the test runs (minimum sample size).
• Executing load test runs.
• Computing chosen statistic.
• Comparing computed statistic to minimum/maximum value allowed.

For a complex system, a large expenditure of resources is typically required to rigorously set up and run
a single concurrent users load test. In these situations, a sensible sequential test strategy is to first
perform a single load test and evaluate the margin of safety between the actual and required
concurrent users at System Response Time degradation. If the concurrent user safety margin is
sufficiently high and System Response Time degradation is not precipitous, it may make sense to stop
testing after only one run.

Reliability
Like performance and scalability, reliability is an important system attribute that may be treated as an
explicit NFR and can vary randomly based on the state of the system. For example, the success rate of a
Single Sign-on capability can depend on the load being placed on the system by users attempting to sign
on. Under high loads, when a sign-on server goes down and a large number of users simultaneously try
to sign back in when it comes up, the Single Sign-on capability may be overwhelmed and behave
unreliably. As an example, a reliability NFR may be written as:

98% of the time users successfully execute the Single Sign-on command

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 11

Like the response-time performance NFR previously discussed, this Single Sign-on NFR also requires a
statistical test to rigorously evaluate and assess (or verify). The following is a simple example that
illustrates how to apply the STAT statistical method, the One Proportion Z-test, to rigorously verify this
requirement.

Example—Reliability NFR: 98% of the time users successfully execute the Single Sign-on command

Assuming a Single Sign-on success rate of 98%, minimum sample size computations show approximately
500 sign-ons would be adequate to verify, with 95% confidence, the hypothesis that the success rate for
the Single Sign-on population is 98% or higher. The underlying statistical information to apply a z-test
(assuming an underlying normally distributed population) is:

• H0: Single Sign-on success rate is 0.98 or higher (null hypothesis)
• HA: Single Sign-on rate is less than 0.98 (alternate hypothesis)
• p̂ = 0.97 (observed proportion in sample)
• p0 = 0.98 (null hypothesis value of 98%)
• n = 500 (sample size)
• 𝑧𝑧.05 = −1.645

Note that the assumption is the sign-on process is functioning as designed (98% success rate) and this
test attempts to find evidence to reject this assumption, that is, the sign-on process has a success rate
less than 98%.

Compute z-statistic using the formula below and compare to 𝑧𝑧.05.

𝑧𝑧 =
�̂�𝑝 − 𝑝𝑝0

�𝑝𝑝0(1− 𝑝𝑝0)
𝑛𝑛

We see that 𝑧𝑧 = -.714 > -1.645, and therefore, we fail to reject the null hypothesis that success rate is
equal to or greater than 98%.

For more detailed guidance on software reliability, see the STAT COE best practice “Software Reliability
Fundamentals Best Practice.” (Rowell & Kolsti, 2018)

Risk-based Approach to Software Test Coverage

Background
The SAFe Requirements Model mandates each user story include “acceptance criteria” that are
validated via story acceptance and unit tests (SAFe Requirements Model, 2021). Government testers are
becoming increasingly involved in the Agile process and are expected to make judgements whether to
accept testing conducted at the sprint level as adequate. Thus, any implementation of the DevSecOps

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 12

methodology must ensure testing is not only “adequate”, but more importantly testing which can be
demonstrated to be adequate using meaningful quantitative measures, such as test coverage measures.

Below are some examples of potential “test coverage” metrics:

• Percentage of tests that are automated
• Number of automated tests per capability, feature, epic, and/or story
• Percentage test coverage of capabilities, features, epics, and/or stories
• Percentage test coverage of all possible test cases in a capability, feature, epic, and/or story
• Percentage test coverage of code (by module or line)
• Number of cybersecurity audit/penetration tests
• Percentage of cybersecurity audit/penetration tests that are automated

All of the above “test coverage” metrics can be useful in understanding the state of Agile testing.
However, only the bolded metric provides meaningful quantitative information about the amount of risk
associated with the state of current Agile testing compared to the risk of executing all of the possible
test cases at a specified level (capability, feature, epic, story). This metric assumes that we have
identified all possible Agile test cases at the specified level and know exactly what test cases have been
executed and what test cases have not been executed. The untested cases represent risk that we have
implicitly accepted because the potential problems associated with the untested test cases have not
been identified yet. Given inadequate resources to test all possible Agile test cases at a specified level,
the challenge is to find a set of test runs that minimizes the risk associated with untested test cases. The
next section presents an example of how to optimize software test coverage while explicitly quantifying
the risk associated with untested test cases.

Optimizing Software Test Coverage in a User Story
Assume that an Agile team needs to develop a test design for a user story involving a parts ordering
form with five input fields: Availability, Delivery Mode, Urgency, Delivery Location, Funding Source
(Table 8).

Table 8. Parts Ordering Form for User Story

Availability Delivery Mode Urgency Delivery
Location Funding Source

Available Military Plane Overnight CONUS Working Capital
Fund

Back-Ordered Re-supply Ship 2-5 Days OCONUS-E General Fund
Discontinued USPS 6-10 Days OCONUS-W Transaction Fund
Replaced UPS > 10 Days

With each of the first three fields having four different choices in the dropdown and the remaining two
each having three different choices, there are a maximum of 576 (4x4x4x3x3) possible test cases to be

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 13

executed, assuming all combinations of choices are feasible. Table 9 provides a complete analysis of the
interactions in the user story form.

Table 9. Interaction Analysis of Parts Ordering Form

Item Number
Factors 5
Levels per Factor 3-5
Total Levels Across All Factors 18
Total Possible Combinations (w/o constraints) 576
1-Way Interactions 18
2-Way Interactions 129
3-Way Interactions 460
4-Way Interactions 816
5-Way Interactions 576

Because of resource and other limitations, it is frequently impossible to execute all of the possible test
cases (exhaustive testing) in this kind of situation. The questions to be answered are how many test
cases to execute and which test cases to execute. Fortunately, empirical studies have shown that
regardless of the actual number of factors in a form, a very high percentage of software faults arise from
the interaction of a small number of factors (6 or less) (Kuhn et al, 2004).

Combinatorial Optimization (CO) is an advanced mathematical technique that can identify a significantly
smaller (less than exhaustive) number of test cases based on identifying 6-way or less factor interactions
that are highly likely to cover a high percentage of software faults. The National Institute of Science and
Technology (NIST)-has developed a CO tool, Automated Combinatorial Testing for Software (ACTS), that
can quickly identify effective and efficient sets of test cases over a range of different t-way factor
interactions (Automated Combinatorial Testing for Software, 2021).

Figure 5 shows the 16-test case set and associated interaction coverage metrics for application of the
ACTS 2-way factor solution while Figure 6 shows the ACTS 3-way factor solution of 64 test cases—only
42 test cases are shown in Figure 6.

The interaction coverage metrics at the bottom of each figure explicitly quantify the risk of not finding
defects associated with each test design in terms of the number/percentage of covered/uncovered
interactions. Thus, ACTS provides the decision maker with valuable tradeoff information to help allocate
testing resources. See the STAT COE best practice on combinatorial design for more detailed guidance
on combinatorial testing. (Bush & Ortiz, 2014)

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 14

Figure 5. Analysis of 2-way Factor Interaction Solution (16 Test Cases)

Figure 6. Analysis of 3-way Factor Interaction Solution (64 Test Cases)

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 15

Recommendations
To make the most of the test coverage approach described in this section requires at least one Agile
team members trained in both recognizing situations (user stories, case studies, lessons learned) with
large numbers of possible test cases and evaluating the percentage of test cases actually covered by a
proposed test design. This capability enables the team to determine the amount of risk associated with
their test design. Ideally, someone on the team will be trained to use a tool like ACTS to optimize test
coverage within the constraints of available test resources rather than having to manually guess at a set
of test runs with good coverage. At a minimum, the self-organizing Agile team members must reach a
consensus that test coverage is an important attribute of a test design that must be formally evaluated
and optimized for each user story.

Software Development Process Metrics
Metrics that are unambiguous, quantifiable, and measurable are helpful to the decision maker during
the software development process. However, the most important property of software development
metrics or any metrics is that driving the value of these metrics in the right direction improves the
desired outcomes of the software development process. Rigorously applying the STAT process to the
definition, refinement, measurement of software development metrics, and assessment of their
predictive power of can produce invaluable metrics for the decision maker.

Below is a list of software development process metrics that are promising candidates for rigorous
application of the STAT process:

• Time to production: total time for new software features to be running in production
environment

• Lead-time: total time to deliver and deploy a new capability to the production environment
• Deployment speed: total time to deploy a new software feature into production environment
• Deployment frequency: how often new releases are deployed into production environment
• Production failure rate: frequency application fails in production environment
• Time to recovery: total time from failure to recovery of application in production environment

Automated Software Testing
This section summarizes STAT COE guidance for DoD managers and practitioners considering or already
applying test automation to software intensive systems. It emphasizes the need to first perform a
comprehensive return on investment (ROI) analysis in order to make a solid business case for
automation followed by the application of a systems engineering approach based on the scientific
method to implement the chosen automation capability. The latest STAT COE best practices on
automated software testing include the following titles:

• “Automated Software Testing Implementation Guide for Practitioners and Managers” (Simpson
et al, 2018)

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 16

• “Automated Software Testing Practices and Pitfalls” (Pestak & Rowell, 2018)

Guidance Objectives
This guidance addresses the following learning and implementation objectives:

• Ensuring automation improves test effectiveness and efficiency at an affordable cost
• Understanding how to best implement test automation
• Understanding the technical components and required staffing for automation
• Building an effective Test Automation Solution
• Increasing the likelihood that automation is applied whenever and wherever it makes sense
• Ensuring automation is resilient and adaptable to change
• Creating modular components to replicate automation within and across programs
• Learning what resources are available to support automation

Lifecycle
This guidance is organized around the implementation phases depicted in Figure 7, which are intended
to encompass the lifecycle of automated software testing as it applies to the roles of managers and
practitioners.

Although the phases can be visualized and enacted in a chronological or linear fashion, we realize and
stress that there is significant connectivity between them making moving in a less structured or iterative
direction frequently advisable. The suggested approach also involves maturing several important
automation tasks across multiple phases. For example, automation tool selection is often considered a
primary and critical decision. Tool selection and tool acquisition should be part of each of the plan,
design, and execute phases. This practice enables increased knowledge and topic maturity in
subsequent phases. Iteration and looping of the phases is a key to success.

Assess

Is
automation
feasible?

Plan

What should
we automate?

Design

What tools,
framework,
personnel,

data collection
system?

Test

Where are the
errors in SUT

and
automation?

Analyze &
Report

How good is
automation

performance?

Improve &
Maintain

What needs
to be done to

grow?

Figure 7. Automation Lifecycle Phases for Managers and Practitioners

Minimum Set of Automation Tasks
If time is restricted and an automation decision must be made quickly, along with short turn preparation
for automation be sure to at least consider the following tasks:

• Research automation opportunities and learn which automation tools are best. Know the costs.

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 17

• Obtain leadership support by presenting the ROI and quickly identify the barriers to success.
• Learn which parts of your testing are best for automation, design the automation framework,

and determine the suite of tools needed for your automation program.
• Find, hire, or grow the automation expertise. Growing can be easier than you think.
• Start with simple automation tasks and increase complexity as automation capability matures.
• Use STAT methods to optimize coverage of the input test space and get the most out of the

output from automated tests.
• Select the automation frequency based on the software development cycle and testing needs.
• Understand that maintenance can be the most costly phase and require the most resources.

Assessment of Automated Software Testing Implementation
A best practice for automated software testing (AST) programs is to conduct periodic independent,
external assessments to identify improvement opportunities. The STAT COE has developed and
implemented the Test Automation Process Insights (TAPI) assessment service to support this best
practice for DoD organizations. The current implementation of this service contains the following major
tasks:

• Pre-visit webinar to organization on opportunities to optimize automated testing and tools
• Pre-visit request to organization for information on current AST program
• Planning & Design
• Setup & Execution
• Validation and Reporting
• Site visit to gather additional information from organization on current AST efforts
• Analysis & Recommendations report

Conclusion
The STAT process along with its methods and techniques are powerful enablers to ensure that a
program’s DevSecOps testing process is effective, efficient, defensible, and resilient. Analytical
approaches using DOE and other statistical methods are essential for rigorous testing of performance,
reliability, and scalability NFRs. For complex user story test designs, combinatorial optimization
techniques enable both explicit identification of testing risk and optimal test coverage. Rigorously
derived software development process metrics consistent with process goals provide the decision maker
with invaluable information for making sound, defensible decisions. Implementation of automated
software testing following the STAT best practices within the DevSecOps lifecycle significantly increases
the likelihood of achieving the desired ROI. In conclusion, the STAT best practices presented in this
paper and referenced on the STAT COE website provide a solid, well-documented foundation for
initiating and improving the T&E of software intensive systems using the DevSecOps lifecycle.

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 18

References
Automated Combinatorial Testing for Software. (2021, March 18). Retrieved from National Institute of

Science and Technology Computer Security Resource Center:
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software

Burke, S. et al (2019, December 31). Guide to Developing an Effective Test Strategy. Retrieved from
Scientific Test and Analysis Techniques Center of Excellence Best Practices and Test Planning
Guides: https://www.afit.edu/STAT/statdocs.cfm?page=1126

Bush, B., & Ortiz, F. (2014, March 25). Combinatorial Test Designs. Retrieved from Scientific Test and
Analysis Techniques Center of Excellence Best Practices and Test Planning Guides:
https://www.afit.edu/STAT/statdocs.cfm?page=1126

DoD Enterprise DevSecOps Reference Design Version 1.0. (2019, August 12). Retrieved from Chief
Information Officer, U.S. Department of Defense:
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Refere
nce%20Design%20v1.0_Public%20Release.pdf

DOD Instruction 5000.02 Operation of the Adaptive Acquisition Framework. (2020, January 23).
Retrieved from
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500002p.pdf?ver=2020-
01-23-144114-093

DOD Instruction 5000.87 Operation of the Software Acquisition Pathway. (2020, October 2). Retrieved
from
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF?ver=virAfQj
4v_LgN1JxpB_dpA%3D%3D

Kuhn, R. et al. (2004). Software Fault Interactions and Implications for Software Testing. IEEE
Transactions on Software Enginering, 30(6), 418-421.

Nonfunctional Requirements. (2021, March 18). Retrieved from Scaled Agile Framework:
https://www.scaledagileframework.com/nonfunctional-requirements/

Pestak, T., & Rowell, B. (2018, September 30). Automated Software Testing Practices and Pitfalls.
Retrieved from aScientific Test and Analysis Techniques Center of Excellence Best Practices and
Test Planning Guides: https://www.afit.edu/STAT/statdocs.cfm?page=1126

Rowell, B., & Kolsti, K. (2018, November 9). Software Reliability Fundamentals Best Practice. Retrieved
from Scientific Test and Analysis Techniques Center of Excellence Best Practices and Test
Planning Guides: https://www.afit.edu/STAT/statdocs.cfm?page=1126

SAFe Requirements Model. (2021, March 18). Retrieved from Scaled Agile Framework:
https://www.scaledagileframework.com/safe-requirements-model/

STAT COE-Report-05-2021
Case Number: 88ABW-2021-0478

 Page 19

Simpson, J. et al. (2018, October). Automated Software Testing Implementation Guide for Managers and
Practitioners. Retrieved from Scientific Test and Analysis Techniques Center of Excellence Best
Practices and Test Planning Guides: https://www.afit.edu/STAT/statdocs.cfm?page=1126

	Executive Summary
	Introduction
	Background
	DevSecOps Lifecycle
	STAT Process

	Non-functional Requirements (NFRs)
	Performance
	Scalability
	Reliability

	Risk-based Approach to Software Test Coverage
	Background
	Optimizing Software Test Coverage in a User Story
	Recommendations

	Software Development Process Metrics
	Automated Software Testing
	Guidance Objectives
	Lifecycle
	Minimum Set of Automation Tasks
	Assessment of Automated Software Testing Implementation

	Conclusion
	References

